Skip to main content

Table 2 Predicting endometriosis using the RF algorithm for each feature data

From: Application of machine learning techniques in the diagnosis of endometriosis

Feature

Accuracy(%)

Sensitivity(%)

Specificity

(%)

AUC

P

95%CI

ca125

75.80

79.30

74.10

0.822

0.041

0.655, 0.844

ca125 + ca199

79.31

86.21

75.86

0.841

0.006

0.6929,0.8725

ca125 + APTT

78.16

75.86

79.31

0.789

0.0132

0.6802,0.8631

ca125 + NLR

78.16

86.21

74.14

0.850

0.0132

0.6802,0.8631

ca125 + HB

74.17

93.10

65.50

0.841

0.067

0.6425,0.8342

  1. Note: area under the curve (AUC)