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Abstract 

Background  Cuproptosis is a novel form of cell death, acting on the tricarboxylic acid cycle in mitochondrial respira-
tion and mediated by protein lipoylation. Other cancer cell death processes, such as necroptosis, pyroptosis, and fer-
roptosis, have been shown to play crucial roles in the therapy and prognosis of ovarian cancer. However, the role 
of cuproptosis in ovarian cancer remains unclear.

Methods  The expression profiles of 10 cuproptosis-related genes were extracted from GSE140082. Kaplan-Meier 
survival and Cox proportional hazards regression were used to identify prognostic genes for constructing risk models. 
Following this, Least Absolute Shrinkage and Selection Operator regression was employed to construct a risk score 
model. Next, a nomogram was constructed to predict overall survival in ovarian cancer. Ultimately, our analysis com-
pared the two groups across various dimensions, including clinical characteristics, tumor progression, metabolism-
related pathways, immune landscape, and drug sensitivity.

Results  MTF1 and LIAS were identified as protective factors in ovarian cancer, with patients in the higher risk group 
being significantly associated with poorer survival. Furthermore, integrating the risk score with clinical characteristics 
in the nomogram demonstrated high specificity and sensitivity in predicting survival. A higher propotion of M2 mac-
rophages, follicular helper T cells, and resting mast cells was observed in the high-risk group. Additionally, the IC50 
values of Dasatinib, Bortezomib, Parthenolide, and Imatinib were significantly lower in the high-risk group.

Conclusions  The study highlights the prognostic significance of cuproptosis-related genes and provides new 
insights into developing pharmacological therapeutic strategies targeting cuproptosis for the prevention and treat-
ment of ovarian cancer.
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Background
 Ovarian cancer is one of the most lethal gynecologic 
malignancies worldwide, with high mortality rates [1]. 
According to the latest information in national cancer 
institute, the death rate of ovarian cancer was 6.3 per 
100,000 women per year, and the 5-year relative sur-
vival was 49.7%. Due to challenges in early diagnosis, 
over 70% of patients are diagnosed at stages III-IV, which 
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significantly impacts the prognosis of women with ovar-
ian cancer [2]. Currently, the treatment of ovarian cancer 
relies on debulking surgery and chemotherapy. Addition-
ally, inhibitors targeting poly ADP-ribose polymerase 
have been incorporated as first-line therapy for women 
with BRCA1/BRCA2 mutations [3]. However, many 
patients still lack viable late-stage therapeutic options 
and effective treatments. There is an urgent need to iden-
tify predictive biomarkers that can improve patient out-
comes with chemotherapy, molecular targeted therapy, 
or immunotherapy.

A novel mechanism of cell death induced by copper 
was identified and termed “cuproptosis” by Tsvetkov and 
colleagues in the journal ‘Science’. This mechanism is 
distinct from other known cell death processes such as 
apoptosis, pyroptosis, anoikis, and ferroptosis [4]. Excess 
copper within cells can be transported to the mitochon-
dria by ionophores. The increased copper directly binds 
to lipoylated components of the tricarboxylic acid (TCA) 
cycle, leading to proteotoxic stress and eventual cell death 
[4]. In various malignant tumors, including breast cancer, 
lung cancer, and prostate cancer, significant alterations in 
the accumulation levels of Cu in serum and tumor tissues 
have been observed [5–7]. Copper, an essential trace ele-
ment, can influence tumorigenesis, angiogenesis, tumor 
recurrence, metastasis, and drug resistance by binding to 
and activating key molecules in multiple signaling path-
ways [8, 9]. The discovery of cuproptosis reveals inter-
action patterns between transition metals and proteins, 
highlighting the intricate connections between cop-
per and tumor progression. This  insight provides a new 
strategy for achieving precise diagnosis and treatment 
of malignant tumors. Lu et al. designed a nano-material 
loaded with epirubicin (copper ionophore) and copper, 
which significantly inhibits the growth of melanoma [10]. 
Furthermore, Guo and his colleagues designed a reactive 
oxygen species-sensitive polymer for co-encapsulation 
of epirubicin and copper, forming nano-particles (NP@
ESCu). They discovered that NP@ESCu not only pro-
motes cancer cell death but also binds to PDL1, enhanc-
ing the immune response to achieve anti-cancer effects 
[11]. Therefore, enhancing the understanding of cuprop-
tosis in tumor cells enables us to wield this sword against 
cancers effectively.

In ovarian cancer, Lin and Yang identified increased 
circulating copper levels in ovarian cancer patients [12]. 
Moreover, several studies have indicated that copper is 
associated with platinum drug resistance in ovarian can-
cer, highlighting its potential for developing novel can-
cer therapies [13–15]. Other cell death processes like 
necroptosis, pyroptosis, and ferroptosis have been shown 
to play crucial roles in therapy and prognosis in ovarian 

cancer [16–18]. However, the specific role of cuproptosis 
in ovarian cancer remains unclear.

In this study, we analyzed the expression of ten cuprop-
tosis-related genes in ovarian cancer and explored the 
frequency of  Copy Number Variation (CNV) in these 
genes. Information on these ten cuproptosis-related 
genes has been previously documented elsewhere, detail-
ing their specific functions and roles in cuproptosis 
(see Additional file 1) [19]. Subsequently, survival analy-
sis revealed that Metal Regulatory Transcription Factor 
1 (MTF1) and Lipoic Acid Synthetase (LIAS) act as pro-
tective factors for ovarian cancer patients. Furthermore, 
a prognostic model was established using univariate Cox 
analysis and least absolute shrinkage and selection opera-
tor (LASSO) regression analysis. We also examined the 
clinical characteristics, tumor progression, metabolism-
related pathways, immune landscape, and drug sensitivity 
in two risk groups of ovarian cancer patients, revealing 
significant distinctions between the groups. The evalu-
ation of our risk model showed promising potential for 
guiding therapy in ovarian cancer. These findings elu-
cidate the molecular mechanisms involving LIAS and 
MTF1, suggesting they could serve as potential therapeu-
tic targets for ovarian cancer.

Methods
Data collection and preprocessing
The expression profiles and clinical information of ovar-
ian cancer were obtained from The Cancer Genome Atlas 
(TCGA, https://​portal.​gdc.​cancer.​gov/) and the expres-
sion matrix of normal ovarian tissue was acquired from 
the Genotype-Tissue Expression (GTEx, http://​commo​
nfund.​nih.​gov/​GTEx/​data). GTEx collects and provides 
normal samples from various organs and tissues, which 
can be used to analyze transcriptomic characteristics 
of tissues under disease conditions, helping us under-
stand and compare gene expression changes associated 
with diseases [20]. GSE140082 and GSE63885 from the 
Gene Expression Omnibus (GEO, https://​www.​ncbi.​
nlm.​nih.​gov/​geo/) database were downloaded. Further-
more, the expression data of 10 cuproptosis-related 
genes (CDKN2A, FDX1, DLD, DLAT, LIAS, GLS, LIPT1, 
MTF1, PDHA1 and PDHB) were extracted. Expression 
differences between ovarian cancer and normal samples 
were calculated using the “limma” package (Australia, 
2015, version:3.52.4) within the R (version: 4.4.1) soft-
ware environment for statistical computing. Significance 
analyses were conducted using unpaired Wilcoxon rank 
sum and signed rank tests. The Sangerbox database 
(http://​www.​sange​rbox.​com/) was used for visualization. 
Correlation analysis of ten cuproptosis-related genes 
were estimated with a Spearman analysis using the R 
package “psych” (American, 2024, version: 2.4.6.26). The 
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“corrplot” package (American, 2021, version: 0.92) was 
applied for visualization.

Copy number variation
The CNV was obtained from TCGA dataset. Gene 
Set Cancer Analysis (http://​bioin​fo.​life.​hust.​edu.​cn/​
GSCA/#/) was applied for exploring the correlations of 
CNV with mRNA expression in ovarian cancer.

Survival analysis
For Kaplan–Meier (KM) curves, p values and hazard 
ratio (HR) with 95% confidence interval (CI) were gen-
erated using log-rank tests using. R packages “ggrisk” 
(China, 2021, version: 1.3), “survival” (2024, ver-
sion:3.6–4), “survminer” (2021, version: 0.4.9), and “tim-
eROC” (2019, version: 0.4) were applied in the process. 
p < 0.05 was considered statistically significant. Addition-
ally, the online database Kaplan‒Meier Plotter (https://​
kmplot.​com/​analy​sis/) which integrates data from GEO, 
the European Genome-phenome Archive (https://​www.​
ebi.​ac.​uk/​ega/) and TCGA was employed to validate the 
relationship between LIAS or MTF1 and the overall sur-
vival (OS) of ovarian cancer patients [21].

Construction of the risk score model
Univariate Cox regression analysis was applied to screen 
prognostic cuproptosis-related genes using R “Survival” 
package (2024, version:3.6–4). Next, the LASSO regres-
sion was employed to construct risk score model using R 
package “glmnet” (2023, version:4.1–8). 

The R “Survminer” package (2021, version: 0.4.9) was 
utilized to determine cutoff points, and the patients were 
then divided into the high- and low-risk group based on 
cutoff points. Patients with risk scores above the cut-
off were assigned to the high-risk group. Conversely, 
patients with risk scores below the cutoff were assigned 
to the low-risk group.

Establishment of a prognostic nomogram
When constructing the  multivariate Cox regression, we 
obtained the regression coefficient β(coef ) for each vari-
able. The nomogram prediction model is essentially a 
visualization of the multiariate Cox regression. The Nom-
ogram normalizes the regression coefficients and dis-
plays them as risk scores on a number line, mapping the 
predicted probability to a scale from 0 to 100. The total 
score accumulated from the various covariates corre-
sponds to the patients’ predicted  probability,  represent-
ing the relative importance of each variable in the model. 
The subvariables of individual covariates were quanti-
fied as scores, and the corresponding probability of the 
total score after adding each subvariable possessed by the 
patient was used as the predicted result. The nomogram 

was established according to the method previously 
reported [22]. Receiver operating characteristic (ROC) (R 
package “survivalROC”, 2022, version: 0.4.9) curves were 
constructed to evaluate the prognostic ability of the nom-
ogram for 1/2/3-year OS and to calculate the area under 
the curve (AUC) values.

Functional analysis
The Search Tool for the Retrieval of Interacting Genes 
(https://​cn.​string-​db.​org/) protein database was utilized 
to construct the Protein-protein interactions (PPI) and 
co-expression networks [23]. Next, Gene Ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
enrichment analyses were performed based on the ten 
cuproptosis-related genes using the R packages “clus-
terProfiler” (China, 2021, version: 4.0). The significance 
criteria were set at p < 0.05. Four tumor-related biology 
pathways (angiogenesis, epithelial-mesenchymal transi-
tion (EMT), glycolysis, and hypoxia) were downloaded 
from the molecular signature database (https://​www.​
gsea-​msigdb.​org/​gsea/​msigdb/​index.​jsp). Furthermore, 
we acquired four metabolic signature gene sets previ-
ously reported, including amino acid metabolism, carbo-
hydrate metabolism, lipid metabolism and tricarboxylic 
acid cycle [24]. Gene Set Variation Analysis (GSVA) is a 
method used to assess the relative activity levels of gene 
sets within individual samples, particularly useful for 
analyzing scores related to tumor progression and metab-
olism-related pathways. For each sample, the R-package 
“GSVA” (Spanish, 2022, version: 1.44.5) was used to cal-
culate the relative activity level for each selected gene 
set. GSVA transforms gene expression values within 
each gene set into a single sample-specific score, ena-
bling comparison of gene set activity levels across differ-
ent samples. Analysis of GSVA scores identifies pathways 
potentially crucial in tumor progression. Higher GSVA 
scores typically indicate active pathways associated with 
tumor progression within the sample, whereas lower 
scores suggest lower activity in those pathways.

Immune cell infiltration
In order to evaluate the correlation between risk group 
and immune cell infiltration in ovarian cancer, the pro-
portions of tumor-infiltrating immune cells were cal-
culated using ‘CIBERSORT’, containing the expression 
features of 22 immune cell subtypes (https://​ciber​sortx.​
stanf​ord.​edu/) [25]. Furthermore, single-cell analysis of 
LIAS and MTF1 in ovarian cancer was conducted in the 
Tumor Immune Single-Cell Hub (TISCH, http://​tisch.​
comp-​genom​ics.​org/) database [26]. Tumor Immune 
Dysfunction and Exclusion (TIDE, http://​tide.​dfci.​harva​
rd.​edu/) platform was used to evaluate the effectiveness 
of immunotherapy between two risk groups [27].
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Drug sensitivity
The  Cellminer database (https://​disco​ver.​nci.​nih.​gov/​
cellm​iner/​home.​do) was established by the National Can-
cer Institute [28]. Food and Drug Administration (FDA) 
approved, clinically tested drugs  were selected. Next, 
correlation analysis was performed between the RNA 
expression level of LIAS and MTF1 and the drug sensi-
tivity. Finally, boxplots were generated to illustrate the 
differences in platinum sensitivity between two groups, 
divided based on high or low expression levels of LIAS 
and MTF1.

We collected the data of drug sensitivity and the 
mRNA expression of LIAS and MTF1 from the Cancer 
Therapeutics Response Portal (CTRP, https://​porta​ls.​
broad​insti​tute.​org/​ctrp/) and Genomics of Drug Sensi-
tivity in Cancer (GDSC, https://​www.​cance​rrxge​ne.​org/) 
databases. Spearman correlation analysis was performed 
to acess the relationship between gene mRNA expres-
sion and the drug IC50 values. A bubble plot was used to 
summarize the correlations between LIAS or MTF1 and 
drugs sensitivity.

Statistical analysis
The R software (version 4.4.1) was employed to perform 
the analysis. R package “ggplot2” (American, 2024, ver-
sion: 3.5.1) was used for visualization. For camparisons 
between two groups, if the samples meet the parameter 
conditions (normal distribution and homogeneity of vari-
ance), t test was employed, otherwise the non-paramet-
ric two-sided Wilcoxon-rank sum test was performed. 
p < 0.05 was considered statistically significant.

Results
The expression of cuproptosis‑related genes in ovarian 
cancer
Firstly, we explored the differential expression of ten 
cuproptosis-related genes in ovarian cancer. The results 
suggested that the expression of four cuproptosis-related 
genes (CDKN2A, FDX1, DLAT and PDHB) were elevated 
in ovarian cancer, while the expression of LIAS, MTF1, 
GLS, LIPT1 and PDHA1 were decreased (Fig.  1A). In 
addition, there were strong associations between the 
expression of ten cuproptosis-related genes (Fig. 1B). For 
instance, FDX1 was highly and positively correlated with 
DLAT (r = 0.79, p < 0.001) (Fig.  1B). Next, we explored 
the CNV frequency of the cuproptosis-related genes, 
and revealed that a larger number of broad CNVs were 
existed in these genes, most of which led to amplification, 
except for deletions in FDX1, DLAT, PDHB and PDHA1 
(Fig. 1C). Furthermore, CNV was shown to be positively 
correlated with the expression of cuproptosis-related 
genes (Fig. 1D).

The prognostic value of cuproptosis‑related genes 
and construction of the risk model
GSE140082, which includes the expression profiles and 
clinical information of 380 ovarian cancer patients, was 
used to study the prognosis of 10 cuproptosis-related 
genes. We observed that MTF1 and LIAS act as protec-
tive factors for ovarian cancer patients (Fig.  2A and B). 
Using the KMplotter website to validate the prognos-
tic effects of LIAS and MTF1, the results indicated that 
high expression of LIAS and MTF1 was associated with 
a favorable prognosis (Additional file  2). Furthermore, 
univariate Cox analysis revealed that MTF1 and LIAS 
were protective factors for ovarian cancer, consistent 
with the survival analysis (Fig. 2C). Subsequently, MTF1 
and LIAS were selected to construct a prognostic model 
using LASSO regression analysis. Based on the optimal 
cutoff value, patients were categorized into high or low-
risk groups (Fig.  2D). Survival analysis showed that a 
higher risk score was significantly associated with poorer 
overall survival (OS) (Fig.  2E). Moreover, the predictive 
performance of the risk model was deemed satisfactory 
(Fig. 2F).

Construction and validation of a prognostic nomogram
We examined the prognostic effects of the risk model in 
patients at different clinical stages. Patients with high-
risk scores, in terms of age, grade 3–4, and stage III-IV 
had significantly worse overall survival (OS) compared to 
those with low-risk scores (Additional file 3A-D). How-
ever, due to the challenges in early detection of ovarian 
cancer, most clinical samples were found to be in inter-
mediate to advanced stages, resulting in a small number 
of patients with G1-2 and stage I-II, which may bias the 
experimental results (Additional file 3E and 3F). The risk 
score was identified as an independent protective factor 
(p < 0.001, 95% CI HR: 1.215–1.516) (Fig.  3A), and this 
association remained statistically significant (p < 0.001, 
95% CI HR: 1.195–1.486) after adjusting for age, stage, 
and grade (Fig.  3B). To provide a quantitative method 
for survival prediction, we constructed a nomogram 
integrating both the risk score and clinical character-
istics (Fig.  3C). The overall C-index of the model was 
0.69. Calibration plots depicted in Fig. 3D demonstrated 
good performance of the derived nomogram. Similarly, 
the nomogram model showed predictive ability for 1, 
2, and 3-year overall survival rates (1-year AUC = 0.67, 
2-year AUC = 0.73, 3-year AUC = 0.68) (Fig. 3E), indicat-
ing high specificity and sensitivity in survival prediction 
when integrating the risk score with clinical characteris-
tics. Additionally, external datasets GSE63885 and TCGA 
were used for validation to assess the prognostic value 
of the risk scores. The results confirmed that high-risk 
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scores were strongly associated with worse prognosis 
(Fig. 3F).

Functional analysis
The PPI analysis revealed that PDHB, LIAS, DLAT, 
PDHA1, LIPT1, and DLD exhibited numerous internal 
connections with other proteins, whereas CDKN2A and 
MTF1 were not associated with others (Fig. 4A). To fur-
ther elucidate the potential roles of cuproptosis-related 
genes, functional enrichment analyses, including GO and 
KEGG pathway analyses, were conducted.

The GO analysis results showed that cuproptosis-
related genes were associated processes such as mRNA 
metabolic processes, mRNA stability, ubiquitin ligase 
complex, methyltransferase complex, ubiquitin-protein 
transferase activity, and methylation-dependent protein 
binding (Fig.  4B). Furthermore, KEGG pathway analy-
sis revealed involvement in pathways including ubiqui-
tin-mediated proteolysis, mitophagy, RNA polymerase, 

adherens junction, and Hedgehog signaling pathways 
(Additional file 4).

Additionally, we investigated the relationship between 
risk groups and pathways related to tumor progression 
and metabolism. In GSE140082, angiogenesis and EMT 
were enriched in the high-risk group, whereas amino acid 
metabolism was enriched in the low-risk group (Fig. 4C). 
Consistent results were observed in GSE63885 and 
TCGA datasets (Fig. 4D and E).

Immune landscape
The infiltration level of immune cells was evaluated in 
the GSE140082 cohort using the CIBERSORT algorithm 
(Fig.  5A). Patients in the two groups showed no differ-
ence in the infiltration of most antitumoral immune 
cells, including CD8+ T cells, activated NK cells, mem-
ory CD4+ T cells, and activated dendritic cells. How-
ever, the high-risk group exhibited a higher fraction 
of CD4 + native T cells (p < 0.01), M2 macrophages 
(p < 0.001), follicular helper T cells (p < 0.05), and resting 

Fig. 1  The expression and CNV landscape of cuproptosis-related genes in ovarian cancer. A Significant differences in the mRNA levels 
of cuproptosis-related genes in ovarian cancer versus normal tissues. Red represents ovarian cancer whereas blue represents normal ovarian 
tissue. B Correlation analysis of cuproptosis-related genes in ovarian cancer. Red represents a positive correlation while blue represents 
a negative correlation. The values in the bottom tringle represents the correlation coefficients. C Frequencies of CNV gain and loss CNV 
among cuproptosis-related genes. D Spearman correlation between CNV and mRNA expression of cuproptosis-related genes in ovarian cancer. 
The larger the circle, the smaller log-rank value. The redder the color, the stronger the correlation. ***p < 0.001, **p < 0.01. ns means no statistical 
difference
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mast cells (p < 0.05). Additionally, a higher level of mono-
cytes (p < 0.01) was observed in ovarian cancer patients 
from the low-risk group (Fig. 5A).

Next, we explored the association between the expres-
sion of LIAS or MTF1 and immune cells. We obtained 
single-cell RNA sequencing data of ovarian cancer 

samples in  GSE147082 cohort  using the TISCH2 web-
site (Additional file  5 A and 5B). The results indicated 
that LIAS and MTF1 were detectable in both tumor cells 
and non-tumor cells (Additional file  5C and 5D). LIAS 
expression was predominantly detected in T cells, B cells, 
and macrophages (Additional file  5E), while both LIAS 

Fig. 2  The prognostic value of cuproptosis-related genes and construction of the risk model. High expression of MTF1 (A) and LIAS (B) were 
associated with better overall survival. C Univariate analysis of the hazard ratios for cuproptosis-related genes. D The risk score and survival time 
in GSE140082. E Survival analyses for patients in high- and low- risk group using Kaplan-Meier curves. F Receiver operating characteristic (ROC) 
curves of risk model
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and MTF1 were enriched in B cells, macrophages, and 
endothelial cells (Additional file 5F).

Furthermore, using TIMER datasets, we analyzed 
the correlation between LIAS or MTF1 expression and 
immune cells infiltration. The results revealed that LIAS 
was positively correlated with CD4 and CD8 + T cells, 

and MTF1 was positively correlated with macrophages, 
which corroborated with the single-cell RNA sequencing 
results (Additional file  6A). Considering the clinical use 
of immune checkpoint inhibitors (ICIs) in ovarian cancer 
treatment, we investigated the association between risk 
score and the expression levels of ICI-related biomarkers. 

Fig. 3  Validation and application of risk score in ovarian cancer. A, B Univariate analysis (A) and multivariate analysis (B) of the hazard ratios 
for the risk score. C A nomogram to quantitatively predict survival based on the risk score and clinical parameters. D Calibration curves 
of the nomogram and receiver operating characteristic (ROC) curves (E) to estimate the accuracy and performance of the predictive nomogram. F 
Validation of risk score in GSE63885 and TCGA. ***p < 0.001, **p < 0.01. ns means no statistical difference
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Fig. 4  The functional analysis of cuproptosis-related genes. A The PPI network of ten cuproptosis-related genes. B The GO analysis 
of cuproptosis-related genes. C-E The enrichment score of tumor progression and tumor metabolism between two risk groups in GSE140082 (C), 
GSE63885 (D) and TCGA (E). ***p < 0.001, **p < 0.01, *p < 0.05. ns means no statistical difference
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We found that high risk scores were positively cor-
related with elevated expression of CD276, PDCD1, 
CD44, LAG3, and CD160 (Fig. 4B). The TGF-β pathway 
plays a critical role in the immunosuppressive tumor 

microenvironment, and we observed up-regulation of 
TGF-β-related genes in the high-risk group (Additional 
file 5B). These findings suggest that the immune micro-
environment in the high-risk group is more prone to an 

Fig. 5  The immune landscape in risk groups. A and B The abundance of tumor immune infiltrating cell (A) and the expression of immune 
checkpoint (B) between two risk groups
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immunosuppressive state. Additionally, the high-risk 
group exhibited a higher TIDE score, indicating a greater 
potential for immune escape (Additional file 5 C).

Drug sensitivity analysis
Drug sensitivity analysis was conducted to identify poten-
tially responsive drugs. Results with p < 0.05 and cor > 0.3 
were exclusively included in additional file  6. Positive 
correlations were observed between the IC50 values of 15 
drugs (Palbociclib, Nelarabine, Chelerythrine, Fostam-
atinib, Vorinostat, Hydroxyurea, Asparaginase, Dromo-
stanolone Propionate, Cytarabine, Acrichine, Cladribine, 
Nitrogen mustard, Cyclophosphamide, LMP776, and 
Crizotinib) and LIAS levels in ovarian cancer patients. 
Conversely, negative correlations were found between 
the By-Product of CUDC-305 and MTF1. Subsequently, 
we investigated differences in drug reactivity IC50 val-
ues between high- and low-LIAS groups. Specifically, 
the IC50 values of six drugs (Palbociclib, LMP776, Vori-
nostat, Dromostanolone Propionate, Nitrogen mus-
tard, and Cladribine) were lower in the low-LIAS group 
(Additional file 8 A-F). These findings suggest a potential 
efficacy of these six drugs in treating LIAS-related condi-
tions. Genomic alterations have a considerable impact on 
the clinical response to chemotherapy. We further inte-
grated drug sensitivity data with gene expression profiles 
from GDSC and CTRP cancer cell lines  databases. In 
the CTRP database, drug sensitivity to gemcitabine, vin-
cristine, SR-II-138 A, CR-1-31B, and KX2-391 showed a 
negative correlation with MTF1 or LIAS expression lev-
els (Additional file  9 A). Pearson’s correlation analysis 
in the GDSC database revealed that drug sensitivity to 
AT-7519, PHA-793,887, and SNK-2112 was negatively 
associated with MTF1 and LIAS levels based on IC50 
values (Additional file 9B).

The above studies primarily focused on the expres-
sion levels and drug sensitivity of LIAS and MTF1. To 
explore drug sensitivity in the high- and low-risk groups, 
we employed ridge regression analysis using the pRRo-
phetic algorithm to estimate the IC50 of drugs in each 
ovarian cancer patient. We observed that the IC50 val-
ues of Dasatinib, Bortezomib, Parthenolide, and Imatinib 
were significantly lower in the high-risk group (p < 0.05; 
Fig.  6A-D), suggesting that patients in the high-risk 
group tended to be more sensitive to chemotherapy.

Discussion
Ovarian cancer presents significant challenges in treat-
ment and prognosis due to its difficulty in early detection, 
high malignancy, propensity for distant metastasis, and 
tendency for recurrence. Besides surgical intervention, 
ovarian cancer typically requires adjunctive therapies to 
prevent relapse. Chemotherapy stands as the mainstay 

of treatment, yet some patients develop resistance to 
chemotherapy drugs. Additionally, targeted therapies 
directed at specific biomarkers and genetic mutations 
in cancer cells, such as PARP inhibitors, BRAF inhibi-
tors, and mitogen-activated protein kinase kinase (MEK) 
inhibitors, offer personalized treatment options [29, 30]. 
However, there remains a lack of universally applicable 
targeted therapies for all ovarian cancer patients, as some 
tumors may not harbor identifiable biomarkers or muta-
tions suitable for targeted treatments. Therefore, there is 
an urgent need for exploring new potential therapeutic 
avenues to improving the prognosis and survival rates of 
ovarian cancer patients.

Extensive evidence suggests that copper levels are 
elevated in various malignant tumors [31–33]. Intracel-
lular copper release is facilitated by GSH redox activity. 
When copper accumulates excessively in cancer cells, 
cellular GSH is depleted, leading to increased ROS levels 
[34]. Notably, Tsvetkov and colleagues have explored the 
mechanism of copper-induced cell death, revealing that 
copper can induce aggregation of lipid-acylated proteins 
and loss of iron-sulfur (Fe-S) cluster proteins by bind-
ing directly to the lipid-acylated component of the TCA 
cycle, ultimately increasing ROS and causing cell death 
[4]. Despite treatment options such as surgical resec-
tion, chemotherapy, and targeted therapy, outcomes for 
advanced-stage  ovarian cancer remain unsatisfactory. 
Exploiting the ROS susceptibility of cancer cells and the 
mechanism of cuproptosis may hold promise for ovarian 
cancer treatment.

In this study, we analyzed the differential expres-
sion and prognostic value of cuproptosis-related genes 
in ovarian cancer. We found that LIAS and MTF1 act 
as protective factors for patients with ovarian cancer 
in GSE140082. Coproptosis occurs through the  direct 
binding of copper to acylated components of the tricar-
boxylic acid cycle. This leads to aggregation of acylated 
proteins and subsequent loss of iron-sulfur cluster pro-
teins, resulting in protein toxicity stress and ultimately 
cell death [4]. LIAS, associated with iron-sulfur clusters 
rather than directly with copper, is an enzyme located 
in the mitochondria that plays a critical role in the bio-
synthesis of lipoic acid, an essential cofactor involved 
in mitochondrial energy metabolism [35]. Maintaining 
effective mitochondrial function is crucial for provid-
ing energy to rapidly dividing cells and overcoming oxi-
dative stress. LIAS contributes to mitochondrial health 
and energy production by promoting the biosynthesis of 
lipoic acid [36]. Adequate levels of lipoic acid and proper 
mitochondrial function may help cells resist metabolic 
stresses associated with cancer growth. MTF1 is a tran-
scription factor that plays a crucial role in regulating the 
expression of genes involved in metal ion homeostasis, 
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particularly copper. It binds to specific DNA sequences 
called metal response elements to activate or repress tar-
get genes in response to changes in metal levels within 
cells [37]. Dysregulation of copper levels can affect oxi-
dative stress responses and other pathways involved in 
cancer progression. Furthermore, the prognostic value 
of LIAS and MTF1 in ovarian cancer was validated 
using four external GEO datasets. Subsequently, a risk 
model incorporating MTF1 and LIAS was developed, 
dividing ovarian cancer patients into high- and low-
risk groups. Survival analysis revealed that a higher risk 
score was significantly associated with poor OS. Addi-
tionally, we investigated the relationship between risk 

groups and pathways related to tumor progression and 
metabolism. The results reveled that angiogenesis and 
EMT were enriched in the high-risk group. Accumulat-
ing evidence indicates that copper promotes angiogen-
esis by activating several angiogenic factors, including 
vascular endothelial growth factor, hypoxia-inducible 
factor-1 (HIF1), and interleukin-1 [34, 38, 39]. Regard-
ing EMT, copper exposure can induce EMT through the 
activation of MAPKs and upregulation of MMP-3 [40]. 
Vitaliti et  al.  elucidated that copper plays a crucial role 
in AKT-driven EMT activation [41]. Furthermore, the 
relationship between risk groups and tumor progression, 
as well as metabolism-related pathways, was explored. 

Fig. 6  Prediction of potential therapeutic agents against ovarian cancer based on risk score. A-D Comparison of estimated IC50 values of Dasatinib 
(A), Bortezomib (B), Parthenolide (C), and Imatinib (D) in high and low risk groups
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The results indicated enrichment of angiogenesis and 
EMT pathways in the high-risk group. Moreover, LIAS 
and MTF1 have been reported to play important roles in 
angiogenesis and EMT [42–44].

The association between the expression of LIAS or 
MTF1 and immune cells was explored using single-cell 
RNA sequencing. LIAS expression was predominantly 
detected in T cells, B cells, and macrophages, while both 
LIAS and MTF1 were enriched in B cells, macrophages, 
and endothelial cells. Additionally, using TIMER data-
sets, we analyzed the correlation between LIAS or MTF1 
and immune cells. The results showed that LIAS was pos-
itively correlated with CD4 and CD8 + T cells, whereas 
MTF1 was positively correlated with macrophages. It is 
known that high infiltration of T cells indicates a favora-
ble prognosis. The tumor macrophage environment 
often includes a significant presence of M2 macrophages, 
which play crucial roles in upregulating immunosuppres-
sive proteins, promoting angiogenesis, tumor invasion, 
metastasis, and suppressing T cell function [45]. Immune 
therapies have shown limited efficacy in ovarian cancer. 
Wang et  al. analyzed the tumor microenvironment of 
patients who responded to immunotherapy and found 
that increased efficacy of immune therapies in ovar-
ian cancer is associated with state changes of NK cells 
and small subsets of CD8 T cells into active and cyto-
toxic states [46]. Immune checkpoint inhibitors (ICIs) 
are administered in clinical practice for treating ovarian 
cancer, and we investigated whether the risk model was 
related to ICI-related biomarkers. The results revealed 
that high-risk scores were positively correlated with high 
expression of CD276, PDCD1, CD44, LAG3, and CD160. 
Furthermore, patients in the high-risk group with a 
higher fraction of CD4 + naïve T cells, M2 macrophages, 
and follicular helper T cells in the tumor immune micro-
environment had a higher TIDE score. These findings 
suggest that patients in the high-risk group are more 
likely to experience immune escape.

To explore potential molecular targets of LIAS and 
MTF1, Cellminer, CTRP, and GDSC were used to analyze 
effective drugs. The IC50 values of six drugs—LMP776, 
Vorinostat, Palbociclib, Dromostanolone Propionate, 
Nitrogen mustard, and Cladribine—were lower in the 
low-LIAS group. LMP776, an indenoisoquinoline topoi-
somerase I (TOP1) inhibitor, is currently in clinical devel-
opment for ovarian cancer and addresses issues such as 
chemical instability, short plasma half-life, and severe 
diarrhea associated with camptothecin derivatives, 
which are FDA approved for ovarian cancer treatment 
[47]. There is overexpression of histone deacetylases 1–3 
in patients with ovarian cancer. Vorinostat, a selective 
inhibitor of histone deacetylase 2, has been approved as 
a therapeutic strategy for ovarian cancer treatment [48]. 

Surprisingly, Palbociclib, a CDK4/6 inhibitor, has shown 
limited efficacy as a single agent due to resistance in 
ovarian cancer [49]. Additionally, the sensitivity of gem-
citabine and vincristine was negatively correlated with 
the expression of MTF1 or LIAS. Vincristine, belonging 
to the vinca alkaloid group, is FDA approved for leuke-
mia treatment and has several off-label uses in ovarian 
cancer [50]. Furthermore, we observed that the IC50 val-
ues of Dasatinib, Bortezomib, Parthenolide, and Imatinib 
were significantly lower in the high-risk group. Dasat-
inib, an SFK inhibitor, has been shown to promote over-
all survival benefits and inhibit peritoneal dissemination 
of ovarian cancer [51, 52]. Depletion of plasma cells by 
Bortezomib reversed mesenchymal characteristics of 
ovarian cancer and inhibited tumor growth in vivo [53]. 
However, other researchers have reported disappoint-
menting result with Bortezomib in ovarian cancer treat-
ment and noted its potential adverse effects on ovarian 
function by accelerating ovarian reserve depletion, lead-
ing to fertility problems [54, 55]. Parthenolide, an Hsp90 
inhibitor, induces cancer cell death through activation of 
caspase-8- and Bid-dependent pathways and the mito-
chondria-mediated apoptotic pathway [56]. Imatinib 
suppresses cancer cell proliferation by acting on plate-
let-derived growth factor receptor alpha and Akt [57]. 
Extensive clinical studies are needed to verify whether 
these drugs can effectively treat high-risk patients. More-
over, the specific mechanisms and potential side effects 
of these drugs must be investigated through in vitro and 
in vivo experiments.

Despite these noteworthy observations, there are still 
some limitations. Firstly, we matched each solid cancer 
type in TCGA with the corresponding healthy tissue in 
GTEx. As the source of patients and specific information 
is not clear, there will be some bias in this comparison. 
Secondly, this study mostly focused on bioinformatic 
analysis, and additional in  vitro and in  vitro and vivo 
experiments may be necessary to verify our results, 
which will be further improved in the future.

Conclusions
Generally, the study provides a comprehensive over-
view of cuproptosis-related genes in ovarian cancer and 
established a prognostic risk model for ovarian cancer 
patients, which is composed of LIAS and MTF1. The 
prognostic risk model demonstrates strong performance 
in predicting OS among ovarian cancer patients. Addi-
tionally, clinical characteristics, tumor progression, 
metabolism-related pathways, immune landscape, and 
drug sensitivity were analyzed across two risk groups of 
ovarian cancer patients, revealing significant distinctions 
between the groups. Specifically, patients in the high-risk 
group may exhibit poor response to immunotherapy but 
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could be sensitive to certain chemotherapeutic agents. 
In summary, the study highlights the potential clinical 
relevance of cuproptosis-related genes and offers novel 
insights into the development of pharmacological strat-
egies targeting cuproptosis for the prevention and treat-
ment of ovarian cancer.
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