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Abstract 

Background  Palmitoylation, a post-translational lipid modification, has garnered increasing attention for its role 
in inflammatory processes and tumorigenesis. Emerging evidence suggests a potential association between pal-
mitoylation and inflammatory responses in the pathogenesis of endometriosis. However, the precise mechanistic 
interplay remains elusive, necessitating further investigation.

Methods  This study integrated transcriptomic analysis and Mendelian randomization (MR) to identify a causal gene 
set implicated in endometriosis. Differentially expressed genes (DEGs) were first identified in the training dataset using 
the limma package in R. Weighted gene co-expression network analysis (WGCNA) was subsequently performed, lev-
eraging Single Sample Gene Set Enrichment Analysis (ssGSEA)-derived scores of palmitoylation-related genes (PRGs) 
as phenotypic traits to identify key modular genes. The intersection of these key modular genes with DEGs yielded 
a refined gene set. Machine learning algorithms were then applied to further optimize gene selection, followed 
by external validation, immune infiltration analysis, RNA network construction, and exploration of potential targeted 
drug candidates.

Results  Through a rigorous screening process, VRK1, GALNT12, and RMI1 emerged as key genes associated with pal-
mitoylation, exhibiting significant downregulation in endometriosis samples (P < 0.05), indicative of a potential 
protective role. Immune infiltration analysis further revealed strong correlations between these genes and M2 
macrophages as well as resting Natural Killer (NK) cells. Additionally, investigations into the targeted RNA network 
and drug association profiling provided novel insights, laying the groundwork for future high-quality validation 
studies.

Conclusions  This study employed a comprehensive analytical framework to identify palmitoylation-associated key 
genes in endometriosis. The integration of immunoinfiltration analysis, RNA network construction, and drug associa-
tion profiling offers valuable insights for advancing clinical diagnostics, disease monitoring, and therapeutic develop-
ment in endometriosis.
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Introduction
Endometriosis is an estrogen-dependent chronic inflam-
matory condition characterized by the ectopic pro-
liferation of endometrial-like tissue [1, 2]. Despite its 
histologically benign classification, the condition exhibits 
invasive, metastatic, and recurrent behaviors reminiscent 
of malignancies, affecting approximately 10% of women 
of reproductive age [3, 4]. Common clinical manifesta-
tions, including chronic pelvic pain, dysmenorrhea, dysu-
ria, and infertility, substantially diminish patients’ quality 
of life [4]. As the pathophysiology of the disease becomes 
increasingly understood, attention has shifted toward the 
roles of hormonal dysregulation, inflammatory media-
tors, and genetic susceptibility [5, 6]. However, defini-
tive conclusions regarding their precise contributions 
remain elusive. Current therapeutic strategies primar-
ily rely on hormonal suppression therapy and minimally 
invasive surgical interventions [7]. Nevertheless, these 
approaches are often associated with high recurrence 
rates and treatment-related complications [8, 9]. Given 
these limitations, elucidating the underlying molecular 
mechanisms and identifying reliable diagnostic and prog-
nostic biomarkers represent crucial avenues for advanc-
ing precision medicine, optimizing clinical management, 
and mitigating disease recurrence.

Protein palmitoylation, a reversible post-translational 
lipid modification, is dynamically regulated by a cohort 
of palmitoyl S-acyltransferases characterized by the 
Asp-His-His-Cys (DHHC) motif [10, 11]. This process 
is counterbalanced by acylprotein thioesterases, which 
modulate protein localization and function in a highly 
dynamic manner [10, 11]. Recent studies have highlighted 
the intricate role of palmitoylation in inflammatory regu-
lation, with ZDHHC12 promoting the degradation of 
NOD-like receptor family pyrin domain-containing 
3 (NLRP3) through chaperone-mediated autophagy 
[12]. In autoinflammatory disorders, the NOD2 variant 
NOD2 s-R444 C demonstrates an increased affinity for 
ZDHHC5, leading to excessive palmitoylation and exac-
erbated inflammatory responses [13]. Inflammation is 
recognized as a central etiological factor in endometrio-
sis. Recent findings suggest that NLRP3-mediated pyrop-
tosis contributes to the pathogenesis of inflammatory 
endometriosis by driving ectopic endometrial cell prolif-
eration and angiogenesis [14]. Targeted anti-inflamma-
tory interventions, such as long-acting anti-IL8 antibody 
administration, have shown promise in mitigating disease 
progression [15]. Despite extensive research on palmi-
toylation across various biological processes [16–18], its 
specific role in endometriosis remains largely unexplored. 
Notably, ZDHHC12 has been implicated in modulating 
NLRP3 palmitoylation, thereby influencing its activation 
status and regulating myocardial inflammation, oxidative 

stress, and associated cellular damage [19]. Furthermore, 
loss of palmitoyl protein thioesterase 1 (Ppt1) impairs 
depalmitoylation, leading to aberrant synaptic protein 
trafficking and neuroinflammation through mechanisms 
involving A-kinase anchor protein 5 (Akap5) and nuclear 
factor of activated T cells (NFAT) [20]. Building on these 
insights, this study aims to elucidate the regulatory role 
of palmitoylation in the pathogenesis of endometriosis, 
assessing its potential as a critical modulatory mecha-
nism. By uncovering previously unrecognized pathogenic 
pathways and identifying novel therapeutic targets, these 
findings are anticipated to advance the development of 
more effective treatment strategies.

By integrating transcriptomic and genomic data from 
the Gene Expression Omnibus (GEO) and Genome-Wide 
Association Studies (GWAS) databases, key palmitoyla-
tion-associated genes in endometriosis were identified 
through differential expression analysis, Mendelian ran-
domization (MR), machine learning, and expression vali-
dation. Further exploration of the interplay between 
palmitoylation and endometriosis was conducted via 
immune infiltration analysis, chromosomal localization, 
and regulatory network reconstruction, providing a theo-
retical foundation for the precise diagnosis, surveillance, 
and therapeutic intervention of endometriosis.

Materials and methods
Data collection and extraction
Endometriosis-related datasets (GSE51981 and 
GSE25628) were obtained from the GEO database for 
transcriptomic analysis. The GSE51981 dataset, desig-
nated as the training set, comprised 77 pelvic endometri-
osis (PE) samples and 34 control samples, with genomic 
profiling conducted on the GPL570 platform. To enhance 
data specificity, 37 samples with uterine or pelvic pathol-
ogy were excluded from the analysis. The GSE25628 data-
set, serving as the independent validation set, included 
16 endometriosis and 6 control endometrial tissue sam-
ples, sequenced on the GPL571 platform. Additionally, 
Mendelian randomization (MR) data on endometriosis 
were retrieved from the publicly available Integrative 
Epidemiology Unit (IEU) Open GWAS database. The 
selected dataset (ukb-b- 9668) comprised genomic data 
from 463,010 European individuals, including 1,121 cases 
and 461,889 controls, encompassing a total of 9,851,867 
single nucleotide polymorphisms (SNPs). A curated list 
of 23 palmitoylation-related genes (PRGs) was extracted 
from relevant literature [21].

PRGs score and weighted gene co‑expression network 
analysis
In the GSE51981 dataset, PRG scores were computed 
using single-sample gene set enrichment analysis 
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(ssGSEA) from the GSVA package (v1.46.0; data of use: 
2024.11.20) [22], based on the differential expression of 
PRGs in PE and control samples. Statistical comparisons 
of PRG scores between PE and control groups were per-
formed using the Wilcoxon test, with significance set at 
P < 0.05.

Weighted gene co-expression network analysis 
(WGCNA) was subsequently applied to identify key 
module genes in GSE51981, utilizing ssGSEA-derived 
PRG scores as trait variables via the WGCNA package 
(v1.7.1; data of use: 2024.11.20) [23]. Initial sample clus-
tering was conducted to detect and eliminate outliers. 
The optimal soft threshold power was determined by 
achieving an R2 exceeding 0.8 while maintaining near-
zero mean connectivity. A co-expression matrix was 
then constructed using the selected soft threshold, with 
a minimum module size of 30 genes, a dynamic tree cut 
parameter of 2, and a module merging threshold of 0.25. 
Distinct gene modules were assigned unique color labels. 
Correlation coefficients between endometriosis samples, 
control samples, and PRG scores were computed for each 
module, and the associations were visualized in a heat-
map. Modules demonstrating a significant correlation 
with PRG scores (|r|> 0.5, P < 0.05) were designated as 
key modules, with their constituent genes identified as 
key module genes.

Differential expression analysis
Differentially expressed genes (DEGs) between PE and 
control samples in GSE51981 were identified using the 
limma package (v3.54.0; data of use: 2024.11.20) [24], 
applying selection criteria of |log2 fold change (FC)|> 1 
and P < 0.05. The distribution of DEGs was illustrated via 
a volcano plot and heatmap, generated using the ggplot2 
package (v3.4.3; data of use: 2024.11.20) [25] and Com-
plexHeatmap package (v2.14.0; data of use: 2024.11.20) 
[26], respectively.

Function analysis
The intersecting genes were identified by overlapping 
DEGs with key module genes. To elucidate their func-
tional significance, Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
enrichment analyses were performed using the cluster-
Profiler package (v4.7.1.003; data of use: 2024.11.21) [27], 
with a significance threshold of P < 0.05. GO enrichment 
analysis categorized functional annotations into biologi-
cal processes (BP), cellular components (CC), and molec-
ular functions (MF).

MR study
Based on these intersecting genes, an MR analysis was 
conducted using the TwoSampleMR package (v0.5.6; data 

of use: 2024.11.21) [28], treating these genes as expo-
sure factors and endometriosis as the outcome variable. 
Stringent adherence to classical MR assumptions was 
maintained throughout the analysis: (i) the independence 
assumption ensured that instrumental variables (IVs) 
were not confounded by external factors, (ii) the associa-
tion assumption confirmed a direct influence of IVs on 
the exposure, and (iii) the exclusivity assumption verified 
that IVs affected the outcome solely through the expo-
sure, without alternative causal pathways.

GWAS data for the intersecting genes (expression 
Quantitative Trait Loci, eQTL) and endometriosis (ukb-
b- 9668) were retrieved from the IEU Open GWAS 
database. Initial IV screening was performed using the 
VariantAnnotation (v1.44.0; data of use: 2024.11.21) [29] 
and ieugwasr (v1.0.1; data of use: 2024.11.21) [30] pack-
ages, with a significance threshold of P < 5 × 10–6. Linkage 
disequilibrium (LD) filtering was applied (clump = TRUE, 
R2 = 0.001, kb = 10), and genes with at least three SNPs 
(nSNP ≥ 3) were retained, ensuring harmonization of 
effect alleles and effect sizes. Weak IVs were identified 
based on the F-statistic, with IVs excluded when F < 10. 
MR analysis was conducted using five complementary 
methods: MR Egger [31], Weighted Median [32], Inverse 
Variance Weighted (IVW) [33], Simple Mode [34], and 
Weighted Mode [35], with IVW serving as the primary 
statistical approach (P < 0.05). Results were visualized 
through scatter plots, forest plots, and funnel plots. 
To assess the robustness of the MR findings, sensitivity 
analyses were performed, including heterogeneity test-
ing (Cochran’s Q test, P > 0.05), horizontal pleiotropy 
evaluation (P > 0.05), and leave-one-out (LOO) analysis 
using the mr heterogeneity [36], mr pleiotropy test [37], 
and mr leaveoneout [38] functions, respectively. The 
causal direction was further validated using the Steiger 
test, with a correct causal direction indicated by Steiger 
P < 0.05. Following these analyses, genes demonstrating 
significant causal relationships with endometriosis were 
identified as candidate genes for further investigation.

Machine learning and gene expression analysis
To further refine the selection of feature genes, four 
machine learning algorithms—Random Forest (RF), 
Support Vector Machine (SVM), Generalized Linear 
Model (GLM), and k-Nearest Neighbor (KNN)—were 
employed to construct predictive models based on the 
expression profiles of candidate genes in the GSE51981 
dataset. The core reason for selecting these machine 
learning methods was that their advantages comple-
mented each other, providing more comprehensive and 
accurate feature gene selection results. Each method 
had its strengths in data processing, feature impor-
tance evaluation, high-dimensional data handling, and 
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model interpretability. Therefore, using multiple meth-
ods for comparison improved the reliability and accu-
racy of the results. Model training and validation were 
conducted using the caret package (v6.0–93; data of 
use: 2024.11.21) [39]. To evaluate model performance, 
receiver operating characteristic (ROC) curves and 
residual box plots were generated using the DALEX 
package (v1.1.0; data of use: 2024.11.21) [40]. Addition-
ally, gene importance scores derived from each machine 
learning model were visualized using bar plots. The top 
10 most important genes from each model were inter-
sected to identify a refined set of feature genes.

Expression validation of the identified feature genes 
was subsequently performed in both the GSE51981 
and GSE25628 datasets. Wilcoxon tests were applied to 
compare gene expression between endometriosis and 
control samples, with significance set at P < 0.05. Genes 
exhibiting significant differential expression in both 
datasets, with a consistent expression trend, were des-
ignated as key genes.

Immune infiltration analysis
To assess immune cell infiltration in endometriosis and 
control samples from GSE51981, the CIBERSORT algo-
rithm (v1.0.3; data of use: 2024.11.22) [41] was applied 
to estimate immune scores for 22 immune cell types. 
Samples with P > 0.05 were excluded to ensure reliable 
deconvolution results. Wilcoxon tests were then used 
to compare immune cell composition between endo-
metriosis and control samples, and immune cell types 
exhibiting significant differential infiltration (P < 0.05) 
were selected for further analysis.

Spearman correlation analysis was subsequently con-
ducted to explore relationships among the 22 immune 
cell types and to assess associations between key genes 
and differentially infiltrated immune cells, with correla-
tion thresholds set at |r|> 0.3 and P < 0.05.

Chromosomal localization and functional similarity 
analyses
To determine the genomic distribution of key genes 
across the 23 pairs of human chromosomes, the Univer-
sity of California Santa Cruz (UCSC) Genome Browser 
(http://​genome.​ucsc.​edu/) was utilized to retrieve their 
chromosomal start and stop positions. The RCircos 
package (v1.2.2; data of use: 2024.11.22) [42] was then 
employed to generate a genome-wide visualization of key 
gene loci. Additionally, functional relationships among 
the key genes were further explored using the GoSem-
Sim package (v6.5–0; data of use: 2024.11.22) [43].

Regulation network analysis
The miRwalk (http://​mirwa​lk.​umm.​uni-​heide​lberg.​de/) 
and miRDB (https://​mirdb.​org/) databases were utilized 
to predict MicroRNAs (miRNAs) targeting the identi-
fied key genes. The intersection of miRNAs derived from 
both databases was considered the final set of key miR-
NAs. An mRNA-miRNA regulatory network was sub-
sequently constructed and visualized using Cytoscape 
(v3.10.2; data of use: 2024.11.22) [44].

Similarly, transcription factors (TFs) associated with 
key genes were predicted using the hTFtarget (https://​
guolab.​wchscu.​cn/​hTFta​rget/#​!/) and miRNet (https://​
www.​mirnet.​ca/) databases. Key TFs were identified 
by overlapping the predictions from both sources, and 
an mRNA-TF regulatory network was constructed and 
visualized in Cytoscape.

To further explore potential therapeutic targets, 
drug-gene interactions were analyzed using the Com-
parative Toxicogenomics Database (CTD) (http://​ctdba​
se.​org/) and the Enrichr database (https://​maaya​nlab.​
cloud/​Enric​hr/). Drugs targeting endometriosis-asso-
ciated key genes were extracted from both databases, 
with duplicate entries removed. An mRNA-drug inter-
action network was then established and visualized in 
Cytoscape.

Immunohistochemistry
For experimental validation, three paraffin-embedded 
sections of ectopic endometrial and normal endometrial 
tissue were collected from the Pathology Department 
of Shanghai General Hospital. Immunohistochemistry 
(IHC) was performed using primary antibodies against 
GALNT12 (Solarbio, K108365P, 1:100), VRK1 (Pro-
teintech, 28,018–1-AP, 1:100), and RMI1 (Proteintech, 
14630–1-AP, 1:100), diluted in Phosphate-Buffered 
Saline (PBS). Five-micrometer-thick paraffin sections 
were deparaffinized and rehydrated, followed by incuba-
tion with 0.3% H2O2 in methanol to inhibit endogenous 
peroxidase activity. After antigen retrieval and cooling, 
sections were blocked with 1% Bovine Serum Albumin 
(BSA) and incubated with primary antibodies overnight 
at 4  °C. The following day, sections were treated with 
HRP-conjugated secondary antibodies (Shanghai Long 
Island Biotech, Shanghai, China) for 1  h at room tem-
perature, followed by diaminobenzidine (DAB) staining 
and hematoxylin counterstaining. Slides were examined 
and imaged under a Leica SP5 light microscope (Leica, 
China) at 100 × and 200 × magnification.

Statistical analysis
Statistical analyses were conducted using R (v4.2.2), 
with inter-group differences assessed via the Wilcoxon 

http://genome.ucsc.edu/
http://mirwalk.umm.uni-heidelberg.de/
https://mirdb.org/
https://guolab.wchscu.cn/hTFtarget/#!/
https://guolab.wchscu.cn/hTFtarget/#!/
https://www.mirnet.ca/
https://www.mirnet.ca/
http://ctdbase.org/
http://ctdbase.org/
https://maayanlab.cloud/Enrichr/
https://maayanlab.cloud/Enrichr/
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test (P < 0.05). Regulatory networks were generated and 
visualized using Cytoscape (v3.10.2).

Results
Screening of palmitoacylation related gene modules 
in endometriosis
PRG score analysis in the GSE51981 dataset revealed 
significantly elevated scores in PE samples compared to 
controls (Fig. 1A). To further explore gene co-expression 
patterns, WGCNA was performed on the GSE51981 
dataset. Clustering analysis confirmed the absence of 
outlier samples (Fig.  1B). An optimal soft-thresholding 
power of 19 was determined based on scale-free topol-
ogy criteria (R2 = 0.8) while maintaining mean connec-
tivity near zero (Fig.  1C). Subsequently, a co-expression 
matrix was constructed, identifying 18 distinct modules, 
each represented by a unique color, with the Grey mod-
ule excluded as it contained unassigned genes (Fig. 1D). 
Pearson correlation analysis revealed significant associa-
tions between PRG scores and two key modules: MEgree-
nyellow (r = 0.68, P < 0.001) and MEbrown (r = − 0.55, P < 
0.001) (Fig.  1E). These modules were designated as key 
modules, collectively encompassing 307 genes, referred 
to as key module genes.

Identification and functional exploration 
of the intersection genes
Differential expression analysis in the GSE51981 dataset 
identified 3,376 DEGs between endometriosis and con-
trol samples, with 1,267 genes exhibiting upregulation 

and 2,109 showing downregulation (Fig.  2A and B). By 
intersecting the 3,376 DEGs with the 307 key module 
genes, 204 intersection genes were identified (Fig.  2C). 
Functional enrichment analysis of these 204 genes 
revealed significant enrichment in 368 GO terms and 
31 KEGG pathways. GO enrichment analysis, catego-
rized into BP, CC, and MF, identified key terms such 
as"nuclear division,""chromosomal region,"and"tubulin 
binding"(Fig.  2D). KEGG pathway enrichment analy-
sis highlighted pathways including"cell cycle,""mineral 
absorption,"and"progesterone-mediated oocyte 
maturation"(Fig. 2E).

Candidate genes with a significant causal relationship 
with endometriosis
The causal association between the 204 intersect-
ing genes and endometriosis was further examined. 
Following the IV screening, 126 genes remained as 
exposure factors for further investigation. The MR 
analysis identified 17 genes with a statistically signifi-
cant causal relationship with endometriosis (P < 0.05) 
(Table 1). Among them, seven genes (e.g., CFD, ECT2, 
HMMR) were classified as risk factors (Odds Ratio 
[OR] > 1), whereas ten genes (e.g., GALNT12, RMI1, 
VRK1) exhibited a protective effect (OR < 1). To visu-
alize these associations, scatter plots, forest plots, and 
funnel plots were generated. Specifically, scatter plots 
for GALNT12, RMI1, and VRK1 (Fig.  3A) displayed a 
negative slope in their fitted regression lines, consist-
ent with a protective association. Forest plots (Fig. 3B) 

Fig. 1  Results of Screening palmitoacylation related gene modules. A The PRGs score of PE and control samples. B The result of cluster analysis. 
C The scale-free fit index for soft threshold power and mean connectivity. D Gene and trait clustering dendrograms. Each branch represents 
an expression module of a highly interconnected groups of genes; each color indicates a corresponding co-expression module. E Heatmap of 18 
gene co-expression modules. The numbers in each cell means the correlation coefficient and p value
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further illustrated the MR effect sizes, all of which were 
negative under the IVW method, reinforcing their 
protective role. Funnel plots (Fig.  3C) demonstrated a 

symmetrical distribution of IVs around the IVW line, 
indicating adherence to Mendel’s second law. Scatter 
plots, forest plots, and funnel plots for the remaining 

Fig. 2  Identification and functional exploration of the intersection genes. A Volcano plot. We set the criteria of |log2fold-change (FC)|> 1 and P < 
0.05 as the difference genes. Red dots are upregulated genes, and blue dots are downregulated genes. B Heatmap plot. The heatmap reflects 
the distribution of gene expression density and gene expression differences in each sample. C Venn diagram. The key module genes obtained 
from WGCNA were intersected with DEGS genes. D GO enrichment analysis results. E KEGG enrichment analysis results

Table 1  Mendelian randomization analysis unveils 17 causal genes in endometriosis

Abbreviation: PE pelvic endometriosis

NO exposure outcome method nsnp pval or

1 CENPE PE Inverse variance weighted 25 0.000458026 0.99892761

2 CFD PE Inverse variance weighted 7 0.013505093 1.000750339

3 ECT2 PE Inverse variance weighted 11 0.049775503 1.000690854

4 FBXO5 PE Inverse variance weighted 8 0.01256748 0.999008793

5 GALNT12 PE Inverse variance weighted 9 0.011019426 0.998513982

6 HMMR PE Inverse variance weighted 5 0.008649861 1.002027803

7 IER3 PE Inverse variance weighted 17 0.012138092 0.999591358

8 MKI67 PE Inverse variance weighted 3 0.020648678 0.997693863

9 NDC80 PE Inverse variance weighted 15 0.014084781 0.999332329

10 PARPBP PE Inverse variance weighted 4 0.003391087 0.997696177

11 PRIM1 PE Inverse variance weighted 9 0.008881558 1.000353618

12 RLN2 PE Inverse variance weighted 4 0.045332653 0.998816069

13 RMI1 PE Inverse variance weighted 11 0.048692518 0.999587813

14 STIL PE Inverse variance weighted 16 0.009312601 1.000757596

15 STMN1 PE Inverse variance weighted 19 0.00385043 1.000811607

16 TYMS PE Inverse variance weighted 12 0.002906875 1.00065104

17 VRK1 PE Inverse variance weighted 10 0.002029756 0.999426071
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genes are provided in Figures S1–S3. Additionally, het-
erogeneity and horizontal pleiotropy tests across all 
17 genes yielded P values exceeding 0.05 (Tables 2 and 
3), suggesting the absence of significant heterogene-
ity or confounding influences in the MR study. LOO 
analysis (Fig. 3D and Fig. S4) further corroborated the 
robustness of the MR results, as no substantial devia-
tions were observed upon sequential exclusion of indi-
vidual IVs. Finally, Steiger directionality tests (Table 4) 
confirmed the correct causal direction for all 17 genes, 
with P values below 0.05, reinforcing the validity of the 

findings. Collectively, these 17 genes emerge as poten-
tial causal candidates implicated in endometriosis.

VRK1, GALNT12, and RMI1 were deemed as key genes 
for endometriosis
Building on the 17 candidate genes identified through the 
MR study, machine learning algorithms were employed 
to further refine the selection of feature genes. Four 
distinct models were constructed, with their predic-
tive performance assessed via ROC curves. All models 

Fig. 3  Identification of candidate genes through MR study. A Scatter plots for GALNT12, RMI1, and VRK1. B Forest plots for GALNT12, RMI1, 
and VRK1. C Funnel plots for GALNT12, RMI1, and VRK1. D LOO analysis for GALNT12, RMI1, and VRK1

Table 2  Results of Mendelian randomization heterogeneity test

Abbreviation: PE pelvic endometriosis

NO exposure outcome heterogeneity_pval

1 CENPE PE 0.994236723

2 CFD PE 0.904994304

3 ECT2 PE 0.974875149

4 FBXO5 PE 0.856902477

5 GALNT12 PE 0.999813501

6 HMMR PE 0.987296141

7 IER3 PE 0.414274668

8 MKI67 PE 0.935968918

9 NDC80 PE 0.999792808

10 PARPBP PE 0.988250764

11 PRIM1 PE 0.946071659

12 RLN2 PE 0.925913532

13 RMI1 PE 0.659333301

14 STIL PE 0.999978701

15 STMN1 PE 0.99963283

16 TYMS PE 0.999579046

17 VRK1 PE 0.99775246

Table 3  Results of Mendelian randomization level pleiotropy 
test

Abbreviation: PE pelvic endometriosis

NO exposure outcome pleiotropy_pval

1 CENPE PE 0.159937324

2 CFD PE 0.353849828

3 ECT2 PE 0.170419632

4 FBXO5 PE 0.612553883

5 GALNT12 PE 0.831829309

6 HMMR PE 0.873546239

7 IER3 PE 0.053648145

8 MKI67 PE 0.791493743

9 NDC80 PE 0.975018594

10 PARPBP PE 0.773482392

11 PRIM1 PE 0.362264287

12 RLN2 PE 0.808950553

13 RMI1 PE 0.070378789

14 STIL PE 0.220005997

15 STMN1 PE 0.781020923

16 TYMS PE 0.894010125

17 VRK1 PE 0.947229403
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achieved an area under the curve (AUC) exceeding 0.7, 
indicative of high classification accuracy (Fig. 4A). Addi-
tionally, residual box plots compared true observed val-
ues with model-predicted outcomes, further validating 
model reliability (Fig.  4B). To prioritize genes with the 

greatest potential relevance to endometriosis treatment, 
gene importance scores were derived from each model 
(Fig. 4C). By selecting the top 10 genes from each model 
and determining their intersection, six feature genes were 
identified: TYMS, VRK1, MK167, GALNT12, CFD, and 
RMI1 (Fig. 4D).

Subsequent gene expression analysis in the GSE51981 
and GSE25628 datasets revealed significantly lower 
expression levels of VRK1, GALNT12, and RMI1 in both 
datasets (P < 0.05) (Fig.  4E and F). Consequently, these 
three genes were designated as key genes implicated in 
endometriosis.

Immune cell infiltration analysis
Immune infiltration analysis (Fig.  5A) characterized the 
distribution of 22 immune cell types in endometriosis 
and control samples from GSE51981. The Wilcoxon test 
identified 11 differentially abundant immune cells. Nota-
bly, M2 macrophages and resting mast cells exhibited sig-
nificantly higher proportions in control samples, whereas 
monocytes and resting natural killer (NK) cells were sig-
nificantly enriched in endometriosis samples (Fig.  5B). 
Correlation analysis among immune cell populations 
demonstrated a strong positive association between rest-
ing mast cells and M0 macrophages (r = 0.51, P < 0.05), 
while regulatory T cells (Tregs) displayed the strong-
est negative correlation with activated memory CD4 T 
cells (r = − 0.53, P < 0.05) (Fig.  5C). Further correlation 

Table 4  Mendelian randomization Steiger directivity analysis

Abbreviation: PE pelvic endometriosis

NO exposure outcome correct_causal_
direction

steiger_pval

1 CENPE PE TRUE 1.8803E- 163

2 CFD PE TRUE  < 0.001

3 ECT2 PE TRUE 6.3846E- 150

4 FBXO5 PE TRUE 8.09018E- 92

5 GALNT12 PE TRUE 2.53764E- 52

6 HMMR PE TRUE 2.45247E- 33

7 IER3 PE TRUE  < 0.001

8 MKI67 PE TRUE 7.05518E- 18

9 NDC80 PE TRUE 8.5987E- 214

10 PARPBP PE TRUE 4.02091E- 22

11 PRIM1 PE TRUE  < 0.001

12 RLN2 PE TRUE 3.27508E- 44

13 RMI1 PE TRUE  < 0.001

14 STIL PE TRUE 2.468E- 171

15 STMN1 PE TRUE 1.9595E- 242

16 TYMS PE TRUE  < 0.001

17 VRK1 PE TRUE  < 0.001

Fig. 4  Obtained key genes via machine learning and external validation. A ROC curves constructed by four machine learning models. B Residual 
box diagram of four machine learning models. C Feature importance of four machine learning models. D Venn diagram of the top 10 feature 
importance genes across four machine learning models. E Expression of feature genes in GSE51981. F Expression of feature genes in GSE25628
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analysis between key genes and differentially abundant 
immune cells revealed a consistent positive association 
between all key genes and M2 macrophages, alongside a 
strong negative correlation with resting NK cells (|r|> 0.3, 
P < 0.001) (Fig. 5D).

Chromosome localization and functional similarity analysis 
of key genes
Chromosomal localization analysis provided further 
insights into the genomic context of the key genes. Spe-
cifically, GALNT12 and RMI1 were mapped to chro-
mosome 9, whereas VRK1 was located on chromosome 
14 (Fig. 6A). Functional similarity analysis revealed that 
VRK1 exhibited the highest similarity with the other key 
genes, suggesting its potential central role in the patho-
genesis of endometriosis (Fig. 6B).

Analysis of regulatory networks associated with key genes
Prediction of miRNA interactions with key genes iden-
tified nine key miRNAs through overlapping results 
from the miRWalk and miRDB databases, enabling the 
construction of an mRNA-miRNA regulatory network 
comprising 12 nodes and 9 edges. Notable interactions 

included VRK1- ‘hsa-mir- 4428’, GALNT12- ‘hsa-mir- 
202 - 3p’, and RMI1- ‘hsa-mir- 3190 - 3p’ (Fig.  7A). Fur-
thermore, 61 TFs targeting the three key genes were 
identified through overlapping predictions from the hTF-
target and miRNet databases. These interactions were 
visualized in an mRNA-TF network consisting of 64 
nodes (3 key genes and 61 TFs) and 76 edges, with SPI1 
identified as a common regulator of all three key genes 
(Fig.  7B). Additionally, drug-gene interaction analysis 
identified 195 drugs targeting the three key genes, leading 
to the construction of a key gene-drug network (Fig. 7C). 
Notably, enterolactone was found to co-target RMI1 
and VRK1, while retinoic acid co-targeted GALNT12 
and VRK1. These regulatory networks provide valu-
able insights into the molecular mechanisms underlying 
endometriosis and potential therapeutic targets.

Validation of key genes by immunohistochemistry
To validate the expression patterns of the key genes, 
three cases of ectopic endometrial tissues and three cases 
of normal endometrial tissues were collected from the 
pathology department. Immunohistochemical staining 
was performed using antibodies against VRK1, RMI1, 

Fig. 5  Immune cell infiltration analysis. A Proportions of 22 immune cell types in PE and controls. B Expression differences of 22 immune cell types 
in PE and controls. C Relationships among immune cells. D Associations between immune cells and key genes
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and GALNT12. The results demonstrated significantly 
higher positive staining rates for all three proteins in nor-
mal endometrial tissues compared to endometriotic tis-
sues, further corroborating their potential involvement in 
endometriosis pathophysiology (Fig. 8).

Discussion
Endometriosis is an inflammatory disease character-
ized by invasiveness and recurrence, and currently 
lacks reliable diagnostic and monitoring indicators 
[2, 4]. Palmitoylation stands as a pivotal mechanism 
of protein post-translational modification, exerting a 
significant influence on inflammatory responses, lipid 
metabolism, and the genesis of tumors [12, 45]. 
Research indicates that palmitoylation plays a sig-
nificant role in the migration and adhesion of neutro-
phils by regulating the function of CRACR2 A protein, 
thereby affecting inflammatory responses and associ-
ated tissue damage [46]. Additionally, palmitoylation 
plays an important role in inflammatory responses by 
modulating the functions of immune proteins and the 
metabolism of gut microbiota [47]. Although the spe-
cific role of palmitoylation in endometriosis remains 
unclear, its close association with inflammation sug-
gests that it may play a key role in the inflammatory 
process of this disease. This study employed bioinfor-
matics approaches to identify DEGs associated with 
palmitoylation in endometriosis and further elucidated 
their functional relevance. Using the IEU OpenGWAS 
database, 17 genes were identified with statistically sig-
nificant associations, establishing a causal relationship 
between these genes and endometriosis. Subsequently, 

machine learning algorithms, combined with external 
dataset validation, refined this selection to three key 
genes—VRK1, GALNT12, and RMI1—each exhibit-
ing reduced expression in endometriotic tissues and 
demonstrating a negative correlation with disease 
occurrence.

The VRK1 (vaccinia-related kinase 1) gene, which 
encodes a serine/threonine protein kinase, is localized 
on chromosome 14 and exhibits broad expression across 
human tissues, with predominant nuclear localization 
[48]. The VRK1-encoded protein regulates cell cycle pro-
gression and genomic stability through phosphorylation 
and is implicated in apoptosis, thus contributing to cel-
lular proliferation and tissue regeneration [49]. Previous 
studies have demonstrated that VRK1 modulates p53 
stability and activity via phosphorylation, thereby influ-
encing lung cancer cell proliferation [50]. Additionally, 
VRK1 promotes cell cycle progression by phosphorylat-
ing VREB, thereby enhancing cAMP-responsive element-
binding protein activity at the CCND1 promoter, leading 
to CCND1 upregulation [51]. Furthermore, VRK1 plays a 
pivotal role in DNA damage repair by stabilizing histone 
H2 AX-H3 interactions, neutralizing ionizing radiation-
induced H2 AX phosphorylation, and participating in 
early DNA repair mechanisms [52].

The GALNT12 (N-Acetylgalactosaminyltransferase 
12) gene, located on chromosome 9, belongs to the poly-
peptide N-acetylgalactosaminyltransferase family and is 
primarily involved in protein post-translational modi-
fication. It catalyzes the transfer of N-acetylgalactosa-
mine to serine or threonine residues of target proteins, 
thereby influencing protein conformation, functional 

Fig. 6  Chromosome localization and functional similarity analysis of key genes. A The chromosome localization of key genes. B The functional 
similarity analysis of key genes
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properties, and genomic stability [53]. Aberrant expres-
sion or dysregulation of GALNT12 has been implicated 
in various pathological conditions. For instance, muta-
tions in GALNT12 leading to abnormal glycosylation 
play a critical role in the pathogenesis of colorectal can-
cer [54]. Moreover, elevated GALNT12 expression is sig-
nificantly associated with poor prognosis in patients with 
glioblastoma, where it enhances tumor cell prolifera-
tion and invasiveness via modulation of the PI3 K/AKT/
mTOR signaling pathway [55]. Additionally, GALNT12 
has been closely linked to IgA1 galactose deficiency, with 
significantly lower mRNA expression levels observed in 
affected individuals compared to healthy controls [56].

The RMI1 (RecQ Mediated Genome Instability 1) 
gene, also localized on chromosome 9, encodes a key 
protein involved in DNA repair and recombination. As 
an integral component of the BLM/RMI1/Top3α com-
plex, RMI1 plays a pivotal role in maintaining genomic 
stability and facilitating DNA damage repair [57]. Loss 
of RMI1 function leads to increased DNA damage 
accumulation, cell cycle arrest, and impaired homolo-
gous recombination repair, particularly following ioniz-
ing radiation exposure [58]. Beyond its role in genomic 
maintenance, RMI1 is involved in metabolic regulation, 
with its expression in adipocytes being modulated by 
glucose through the E2 F pathway [59]. RMI1-deficient 

Fig. 7  The regulatory networks associated with key genes. A The mRNA-miRNA network of key genes. B The mRNA-TF network of key genes. C The 
key genes-drugs network
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mice exhibit resistance to diet- and genetically induced 
obesity, highlighting its involvement in metabolic home-
ostasis [60]. Furthermore, mutations in RMI1 contribute 
to the pathogenesis of Bloom syndrome, a genetic disor-
der characterized by primary microcephaly, intrauterine 
growth restriction, and short stature [61].

Although direct evidence linking GALNT12, RMI1, 
and VRK1 to endometriosis remains limited, their well-
documented roles in gene expression regulation, cell 
signaling, DNA repair, cell cycle progression, and apop-
tosis suggest potential involvement in the disease’s patho-
genesis. For instance, mutations in GALNT12 or RMI1 
leading to aberrant protein function may compromise the 
stability and proliferative capacity of endometrial cells. 
Simultaneously, dysregulated VRK1 activity could dis-
rupt normal cell cycle control, potentially contributing to 
the onset and progression of endometriosis.

Immunofiltration analysis identified 11 distinct 
immune cell types exhibiting differential infiltration pat-
terns in endometriosis. Notably, M2 macrophages dem-
onstrated reduced abundance in endometriotic tissues, 
whereas resting NK cells were significantly enriched. 
M2 macrophages are recognized for their role in tissue 
repair, angiogenesis, and tumor progression [62]. Prior 
studies have reported a marked decline in M2 mac-
rophage proportions across all stages of endometriosis 
in affected individuals [63]. Consistent with these find-
ings, the key genes identified in this study were down-
regulated in ectopic endometrial tissues and exhibited 
a positive correlation with M2 macrophage infiltration. 
NK cells, as critical components of the innate immune 

system, contribute to immune surveillance and tissue 
homeostasis. Within the endometrium, a specialized 
subset known as uterine NK (uNK) cells has been identi-
fied [64]. Research indicates that CD16+ uNK cells pro-
duce cytotoxic factors capable of affecting trophoblast 
function, potentially leading to infertility, miscarriage, or 
placental abnormalities [65]. While this study observed a 
negative correlation between key genes and resting NK 
cells, alongside increased NK cell infiltration in ectopic 
endometrial tissues, the precise role of NK cells in endo-
metriosis remains inconclusive [66]. Further investiga-
tion with larger sample cohorts and additional functional 
validation is required.

MicroRNAs (miRNAs), a class of short non-coding 
RNAs, regulate gene expression post-transcriptionally 
by modulating mRNA stability and translation efficiency. 
Aberrant miRNA expression has been extensively docu-
mented in endometriosis. This study predicted miRNA 
interactions with the three key genes, highlighting 
miR- 202, which has been reported to be upregulated 
in ectopic endometrial tissue. Notably, miR- 202 sup-
presses SOX6 expression, thereby enhancing the invasive 
capacity of ectopic endometrial cells [67]. Although the 
miRNAs identified in this study have not been directly 
investigated in endometriosis, their involvement in other 
pathological conditions has been documented. In cervi-
cal cancer, RGMB-AS1 promotes tumor proliferation and 
invasiveness via the miR- 4428/PBX1 axis [68], while in 
ovarian cancer, miR- 6086 suppresses angiogenesis by 
downregulating the OC2/VEGFA/EGFL6 signaling path-
way [69]. Within the mRNA-TF regulatory network, SPI1 

Fig. 8  Immunohistochemical Validation of GALNT12, RMI1 and VRK1 in Normal and Endometriosis
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was identified as a shared transcriptional regulator of the 
three key genes. Notably, SPI1 is upregulated in ectopic 
endometrial tissues, contributing to the aggressive phe-
notype of endometriotic lesions [70]. Furthermore, drug 
repurposing analysis using the CTD and Enrichr data-
bases identified 195 drug candidates targeting the key 
genes. This network encompasses a diverse range of 
therapeutic agents, including retinoic acid, which has 
demonstrated potential for endometriosis treatment by 
inhibiting estradiol secretion in ovarian endometriotic 
cysts and attenuating disease progression [71]. Addi-
tionally, while enterolactones have not been studied in 
the context of endometriosis, their therapeutic potential 
in other malignancies has been explored. Specifically, 
enterolactones have been shown to enhance radiotherapy 
efficacy in breast cancer by inhibiting DNA repair mech-
anisms and promoting apoptotic pathways [72].

The mechanisms underlying targeted drug actions are 
highly intricate, with potential impacts on disease pro-
gression mediated through diverse pathways. While most 
studies suggest that targeted therapies exert their effects 
primarily by downregulating the expression of target 
genes [73, 74], their functional scope extends beyond 
mere gene suppression. For example, TP53 serves as a 
pivotal tumor suppressor gene, and its functional loss is 
implicated in the pathogenesis of numerous malignan-
cies. Restoring TP53 activity via targeted therapies can 
reestablish its antitumor function, thereby inhibiting 
tumor progression [75]. Similarly, FoxP3, a key transcrip-
tion factor essential for the development and function 
of Tregs, plays a critical role in immune modulation. 
Upregulation of FoxP3 enhances the immunosuppressive 
capacity of Tregs, influencing the onset and progression 
of esophageal cancer [76]. Given the multifaceted mecha-
nisms of targeted drugs, identifying effective therapeutic 
targets is imperative for advancing treatment strategies, 
improving clinical outcomes, and improving patient 
prognosis.

This study has inherent limitations stemming from its 
reliance on data sourced from multiple public databases, 
which may introduce potential biases. Furthermore, the 
analysis is predominantly bioinformatics-driven, lacking 
extensive experimental validation. Although preliminary 
immunohistochemical analysis corroborated the compu-
tational findings regarding the expression of key genes in 
tissue samples, additional validation is required. Future 
work will focus on quantifying gene expression using 
Western blot and quantitative polymerase chain reac-
tion (qPCR) methodologies. Moreover, functional assays 
will be conducted at the cellular level, including gene 
overexpression experiments to assess the impact of these 
genetic alterations on cell proliferation, migration, inva-
sion, and apoptosis.

Conclusions
Overall, this study employed an integrative approach 
combining differential gene expression analysis, 
WGCNA, MR analysis, and machine learning to iden-
tify three key genes associated with palmitoylation in 
endometriosis. Subsequent analyses explored immune 
infiltration dynamics, gene functional similarity, and 
pharmacological correlations. These findings provide 
novel insights that may inform clinical diagnostics, 
disease surveillance, and therapeutic development for 
endometriosis.
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